# Quotient-3 Cordial Labelling For Cycle Related Graphs 

Dr.P.Sumathi ${ }^{1}$, A.Mahalakshmi ${ }^{2}$, A.Rathi ${ }^{3}$<br>Dr.P. Sumathi ${ }^{1}$, Department of Mathematics, C. Kandaswami Naidu College for Men, Anna nagar, Chennai 600 102. sumathipaul@yahoo.co.in<br>A. Mahalakshmi ${ }^{2}$,<br>Department of Mathematics, Srimuthukumaran Institute of Technology, Mangadu Chennai- 122. mahalakshmia.math@gmail.com<br>A. Rathi ${ }^{3}$<br>Department of Mathematics, Dr. M.G.R. Educational and Research Institute, University, Maduravoyal, Chennai 600 095. rathi.math@drmgrdu.ac.in


#### Abstract

Let $G$ be a graph of order $p$ and size q. Let $f: V(G) \rightarrow Z_{4}-\{0\}$ be a function. For each $E(G)$ define $f^{*}: E(G) \rightarrow Z_{3}$ by $f^{*}(u v)=\left\lceil\frac{f(u)}{f(v)}\right\rceil(\bmod 3)$ where $f(u) \geq f(v)$. If the number of vertices having label $i$ and the number of vertices having label j differ by maximum 1 , the number of edges having label k and the number of edges having label 1 differ by maximum 1 then the function f is said to be quotient- 3 cordial labeling of $\mathrm{G} .1 \leq \mathrm{i}, \mathrm{j} \leq 3, \mathrm{i} \neq \mathrm{j}$ and $0 \leq \mathrm{k}, 1$ $\leq 2, k \neq 1$. Here we proved that $C_{n}$ and some cycle related graphs like $\left[C_{n} ; C_{3}\right], n=3,6,9, \ldots$, $\left(\mathrm{P}_{2} \mathrm{Umk}_{1}\right)+\mathrm{N}_{2}, \mathrm{~S}\left(\mathrm{C}_{\mathrm{n}} ; \mathrm{S}_{2}\right)$, joint sum of $\mathrm{C}_{\mathrm{n}}$ and two cycles $\mathrm{C}_{\mathrm{n}}$ having a common vertex is quotient-3 cordial.


Key words: cycle, joint sum, subdivision, quotient-3 cordial graph.

## 1. Introduction

Here the graphs considered are finite, simple, undirected and non trivial. Graph theory has a good development in the graph labeling and has a broad range of applications. Refer Gallian [2] for more information. The cordial labeling concept was first introduced by cahit [1]. The quotient-3 cordial labeling have been introduced by P. Sumathi, A. Mahalakshmi and A. Rathi found in [5-7]. They found some family of graphs are quotient-3 cordial. For notations and terminology we follow [8]. If $G$ receives quotient-3 cordial labeling then $G$ is called as quotient- 3 cordial graph. The number of vertices having label i denotes $v_{f}(i)$ and the number of edges having label $k$ denotes $\mathrm{e}_{\mathrm{f}}(\mathrm{k}), 1 \leq \mathrm{i} \leq 3,0 \leq \mathrm{k} \leq 2$.

## 2. Preliminaries

Definition: $2.1\left[C_{n} ; C_{3}\right]$ graph is obtained by attaching the cycle $C_{3}$ with every vertex of $C_{n}$. Definition: 2.2
$\left(\mathrm{P}_{2} \mathrm{U}_{\mathrm{mk}} 1\right)+\mathrm{N}_{2}$ graph is obtained with the vertex set $\mathrm{V}=\left\{\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{X}_{\mathrm{m}}\right\} \cup\left\{\mathrm{y}_{1}, \mathrm{y}_{2}\right\}$ and the edge set $\left\{\left[\left(y_{1} z_{1}\right),\left(y_{1} z_{2}\right),\left(y_{2} z_{1}\right),\left(y_{2} z_{2}\right),\left(z_{1} z_{2}\right)\right] \cup\left[\left(y_{1} x_{1}\right) \cup\left(y_{2} x_{i}\right): 1 \leq i \leq m\right]\right\}$.

## Definition: 2.3

A graph $\left(C_{n} ; S_{2}\right)$ is obtained by attaching the star $S_{2}$ with each vertex of a cycle $C_{n}$ through an edge.

Definition: 2.4 From G, a graph $S(G)$ is obtained by subdividing every edge of $G$ with a new vertex is called subdivision of G.

## Definition: 2.5

A vertex of first copy of $C_{n}$ is connected with a vertex of second copy of $C_{n}$ through an edge is said to be joint sum of $\mathrm{C}_{\mathrm{n}}$.

## 3. Main Result

Definition: Let $G$ be a graph of order p and size q. Let $f: V(G) \rightarrow Z_{4}-\{0\}$ be a function. For each $E(G)$ define $f^{*}: E(G) \rightarrow Z_{3}$ by $f^{*}(u v)=\left\lceil\frac{f(u)}{f(v)}\right\rceil(\bmod 3)$ where $f(u) \geq f(v)$. If the number of vertices having label i and the number of vertices having label j differ by maximum 1 , the number of edges having label $k$ and the number of edges having label 1 differ by maximum 1 then the function f is said to be quotient- 3 cordial labeling of $\mathrm{G} .1 \leq \mathrm{i}, \mathrm{j} \leq 3, \mathrm{i} \neq j$ and $0 \leq \mathrm{k}, 1$ $\leq 2, \mathrm{k} \neq 1$.

Illustration: 1 A quotient-3 cordial graph


Theorem: 3.1 All cycles $C_{n}$ are quotient- $\mathbf{3}$ cordial for $n \geq 4(n \neq 9,15,21, \ldots)$
Proof: Let $V(G)=\left\{x_{i}: 1 \leq i \leq n\right\}$ and $E(G)=\left\{\left(x_{n} x_{1}\right),\left(x_{i} x_{i+1}\right): 1 \leq i \leq n-1\right\}$.
Here $|V(G)|=|E(G)|=\mathrm{n}$.
Let f: $\mathrm{V}(\mathrm{G}) \rightarrow \mathrm{Z}_{4}-\{0\}$
Case (i): when $n \equiv 0,1,4,5(\bmod 6)$
For all i,
$f\left(x_{i}\right)=1, \quad i \equiv 1,2(\bmod 6)$
$f\left(x_{i}\right)=3, \quad i \equiv 0,3(\bmod 6)$
$f\left(x_{i}\right)=2, \quad i \equiv 4,5(\bmod 6)$
Case (ii): when $n \equiv 2(\bmod 6)$
Labeling of $x_{i}, 1 \leq i \leq n-3$ are same as in case (i).
In this case, label the vertices $\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}$ by 2,1 and 3 respectively.

| Nature of n | $\mathrm{V}_{\mathrm{f}}(1)$ | $\mathrm{V}_{\mathrm{f}}(2)$ | $\mathrm{V}_{\mathrm{f}}(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{n} \equiv 0(\bmod 6)$ | $\frac{n}{3}$ | $\frac{n}{3}$ | $\frac{n}{3}$ |
| $\mathrm{n} \equiv 1,4(\bmod 6)$ | $\frac{n+2}{3}$ | $\frac{n+2}{3}-1$ | $\frac{n+2}{3}-1$ |
| $\mathrm{n} \equiv 2,5(\bmod 6)$ | $\frac{n+1}{3}$ | $\frac{n+1}{3}$ | $\frac{n+1}{3}-1$ |


| Nature of n | $\mathrm{e}_{\mathrm{f}}(0)$ | $\mathrm{e}_{\mathrm{f}}(1)$ | $\mathrm{e}_{\mathrm{f}}(2)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{n} \equiv 0(\bmod 6)$ | $\frac{n}{3}$ | $\frac{n}{3}$ | $\frac{n}{3}$ |
| $\mathrm{n} \equiv 1(\bmod 6)$ | $\frac{n+2}{3}-1$ | $\frac{n+2}{3}$ | $\frac{n+2}{3}-1$ |
| $\mathrm{n} \equiv 2(\bmod 6)$ | $\frac{n+1}{3}$ | $\frac{n+1}{3}$ | $\frac{n+1}{3}-1$ |
| $\mathrm{n} \equiv 4(\bmod 6)$ | $\frac{n+2}{3}-1$ | $\frac{n+2}{3}-1$ | $\frac{n+2}{3}$ |
| $\mathrm{n} \equiv 5(\bmod 6)$ | $\frac{n+1}{3}-1$ | $\frac{n+1}{3}$ | $\frac{n+1}{3}$ |

## Table 1

Theorem: 3.2 The graph $\left[C_{n} ; C_{3}\right]$ is quotient-3 cordial for $n=3,6,9, \ldots$
Proof: Let $\mathrm{V}(\mathrm{G})=\left\{\left[\mathrm{x}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right] \cup\left[\mathrm{v}_{\mathrm{ij}}: 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{j}=1,2\right]\right\}$
$\mathrm{E}(\mathrm{G})=\left\{\left[\left(\mathrm{x}_{1} \mathrm{x}_{\mathrm{n}}\right),\left(\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i} \leq \mathrm{n}-1\right] \cup\left[\left(\mathrm{x}_{\mathrm{i}} \mathrm{v}_{\mathrm{ij}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{j}=1,2\right] \cup\left[\left(\mathrm{v}_{\mathrm{i} 1} \mathrm{~V}_{\mathrm{i} 2}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right]\right\}$
Let $|V(\mathrm{G})|=3 n,|E(\mathrm{G})|=4 \mathrm{n}$.
Define f: V (G) $\rightarrow \mathrm{Z}_{4}-\{0\}$
Labeling of $\mathrm{x}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$ is given below.
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=1, \quad \mathrm{i} \equiv 1,2(\bmod 3)$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=3, \quad \mathrm{i} \equiv 0(\bmod 3)$
Labeling of $\mathrm{v}_{\mathrm{ij}}, 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq 2$ is given below
$\mathrm{f}\left(\mathrm{v}_{\mathrm{ij}}\right)=1, \quad \mathrm{i} \equiv 1(\bmod 3), \mathrm{j}=1$
$f\left(v_{\mathrm{ij}}\right)=3, \quad \mathrm{i} \equiv 1(\bmod 3), \mathrm{j}=2$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{ij}}\right)=3, \quad \mathrm{i} \equiv 0(\bmod 3), \mathrm{j}=1$
$f\left(v_{i j}\right)=2, \quad i \equiv 2(\bmod 3), j=1,2$
$f\left(v_{i j}\right)=2, \quad i \equiv 0(\bmod 3), j=2$
For all $n, \quad v_{f}(1)=v_{f}(2)=v_{f}(3)=n$

$$
e_{f}(0)=e_{f}(1)=e_{f}(2)=\frac{4 n}{3}
$$

Theorem: 3.3 A graph $\left(\mathbf{P}_{2} \cup \mathrm{nK}_{1}\right)+\mathbf{N}_{2}$ is quotient-3 cordial $(\mathrm{n} \neq \mathbf{2}, 5,8, \ldots)$
Proof: Let $V(G)=\left\{u_{i}, v_{i}, w_{j}: 1 \leq j \leq n, i=1,2\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\left[\left(\mathrm{u}_{1} \mathrm{u}_{2}\right),\left(\mathrm{v}_{1} \mathrm{u}_{1}\right),\left(\mathrm{v}_{1} \mathrm{u}_{2}\right),\left(\mathrm{v}_{2} \mathrm{u}_{1}\right),\left(\mathrm{v}_{2} \mathrm{u}_{2}\right)\right] \cup\left[\left(\mathrm{v}_{1} \mathrm{w}_{\mathrm{j}}\right),\left(\mathrm{v}_{2} \mathrm{w}_{\mathrm{j}}\right]: 1 \leq \mathrm{j} \leq \mathrm{n}\right]\right\}$
Let $|V(\mathrm{G})|=4+\mathrm{n},|E(\mathrm{G})|=5+2 \mathrm{n}$.
Let f: V (G) $\rightarrow \mathrm{Z}_{4}-\{0\}$
$\mathrm{f}\left(\mathrm{u}_{1}\right)=\mathrm{f}\left(\mathrm{v}_{1}\right)=1$
$\mathrm{f}\left(\mathrm{u}_{2}\right)=\mathrm{f}\left(\mathrm{v}_{2}\right)=3$.
Label the vertices $\mathrm{w}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{n}$ as follows
$\mathrm{f}\left(\mathrm{w}_{1}\right)=2$
When $\mathrm{n} \equiv 0,1(\bmod 3)$
For $2 \leq \mathrm{j} \leq \mathrm{n}$,
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=1, \quad \mathrm{j} \equiv 2(\bmod 3)$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=2, \quad \mathrm{j} \equiv 0(\bmod 3)$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=3, \quad \mathrm{j} \equiv 1(\bmod 3)$

| Nature of n | $\mathrm{v}_{\mathrm{f}}(1)$ | $\mathrm{v}_{\mathrm{f}}(2)$ | $\mathrm{v}_{\mathrm{f}}(3)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{n} \equiv 0(\bmod 6)$ | $\frac{n+3}{3}+1$ | $\frac{n+3}{3}$ | $\frac{n+3}{3}$ |
| $\mathrm{n} \equiv 1(\bmod 6)$ | $\frac{n+2}{3}+1$ | $\frac{n+2}{3}$ | $\frac{n+2}{3}+1$ |


| Nature of n | $\mathrm{e}_{\mathrm{f}}(0)$ | $\mathrm{e}_{\mathrm{f}}(1)$ | $\mathrm{e}_{\mathrm{f}}(2)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{n} \equiv 0(\bmod 6)$ | $\frac{2 n+3}{3}+1$ | $\frac{2 n+3}{3}$ | $\frac{2 n+3}{3}+1$ |
| $\mathrm{n} \equiv 1(\bmod 6)$ | $\frac{2 n+1}{3}+1$ | $\frac{2 n+1}{3}+1$ | $\frac{2 n+1}{3}+1$ |

## Table 2

## Theorem: $\mathbf{3 . 4} \mathbf{S}\left(\mathbf{C}_{\mathbf{n}} ; \mathbf{S}_{2}\right)$ are quotient- $\mathbf{3}$ cordial.

Proof: The cycle $\mathrm{C}_{\mathrm{n}}$ has the vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3} \ldots \mathrm{u}_{\mathrm{n}}$. Let $\mathrm{x}_{\mathrm{i}}$ be the vertices subdividing the edges $\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)$ for all $1 \leq \mathrm{i} \leq \mathrm{n}-1$ and the vertex $\mathrm{x}_{\mathrm{n}}$ subdividing the edge $\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}$.
Let $\mathrm{V}(\mathrm{G})=\left\{\left[\mathrm{u}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right] \cup\left[\mathrm{v}_{\mathrm{ij}}: 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{j}=1,2\right] \cup[\right.$ wij: $\left.1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{j}=1,2]\right\}$ and $E(G)=\left\{\left[\left(u_{n} x_{n}\right),\left(x_{n} u_{1}\right),\left(u_{i} x_{i}\right),\left(x_{i} u_{i+1}\right): 1 \leq i \leq n-1\right] \cup\left[\left(u_{2 i-1} v_{i j}\right): 1 \leq i \leq n, j=1,2\right] \cup\left[v_{i j} w_{i j}\right):\right.$ $1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{j}=1,2]\}$
Let $|V(\mathrm{G})|=|E(\mathrm{G})|=6 \mathrm{n}$.
Define f: $V(\mathrm{G}) \rightarrow \mathrm{Z}_{4}-\{0\}$ by
For all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{j}=1,2$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=3$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{ij}}\right)=1$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{ij}}\right)=2$
For all $n, \quad v_{f}(1)=v_{f}(2)=v_{f}(3)=2 n$

$$
\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=\mathrm{e}_{\mathrm{f}}(2)=2 \mathrm{n} .
$$

Theorem: 3.5 Joint sum of $\mathrm{C}_{\mathrm{n}}$ are quotient- $\mathbf{3}$ cordial.
Proof: The first cycle $\mathrm{C}_{\mathrm{n}}$ has the vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ and an another cycle $\mathrm{C}_{\mathrm{n}}$ has the vertices $\mathrm{u}_{\mathrm{n}+1}, \mathrm{u}_{\mathrm{n}+2}, \ldots, \mathrm{u}_{2 \mathrm{n}}$.
Let $\mathrm{V}(\mathrm{G})=\left\{\left[\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq 2 \mathrm{n}\right]\right\}$.
$E(G)=\left\{\left[\left(u_{1} u_{n}\right),\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right] \cup\left[\left(u_{1} u_{n+1}\right)\right] \cup\left[\left(u_{i} u_{i+1}\right),\left(u_{n+1} u_{2 n}\right): n+1 \leq i \leq 2 n-1\right]\right\}$
Let $|V(\mathrm{G})|=2 n$ and $|E(\mathrm{G})|=1+2 \mathrm{n}$
Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{Z}_{4}-\{0\}$
Case (i): when $n \equiv 0,2,3,5(\bmod 6)$
For $1 \leq \mathrm{i} \leq 2 \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1, \quad \mathrm{i} \equiv 1,2(\bmod 6)$
$f\left(u_{i}\right)=3, \quad i \equiv 0,3(\bmod 6)$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2, \quad \mathrm{i} \equiv 4,5(\bmod 6)$
Case (ii): when $n \equiv 1(\bmod 6)$
For $1 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(u_{i}\right)=2, \quad i \equiv 1,2(\bmod 6)$
$f\left(u_{i}\right)=3, \quad i \equiv 0,3(\bmod 6)$
$f\left(u_{i}\right)=1, \quad i \equiv 4,5(\bmod 6)$
For $\mathrm{n}+1 \leq \mathrm{i} \leq 2 \mathrm{n}$
$f\left(u_{i}\right)=3, \quad i \equiv 1,4(\bmod 6)$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1, \quad \mathrm{i} \equiv 2,3(\bmod 6)$
$f\left(u_{i}\right)=2, \quad i \equiv 0,5(\bmod 6)$
In this case after labeling all the vertices interchange the label of $u_{n+3}$ and $u_{n+4}$.
Case (iii): when $n \equiv 4(\bmod 6)$
Labeling of the vertices $\mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq 2 \mathrm{n}-1[\mathrm{i} \neq \mathrm{n}]$ are same as in Case (i)
Here $f\left(u_{n}\right)=3, f\left(u_{2 n}\right)=2$.

| Nature of n | $\mathrm{v}_{\mathrm{f}}(1)$ | $\mathrm{v}_{\mathrm{f}}(2)$ | $\mathrm{v}_{\mathrm{f}}(3)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{n} \equiv 0,3(\bmod 6)$ | $\frac{2 n}{3}$ | $\frac{2 n}{3}$ | $\frac{2 n}{3}$ |
| $\mathrm{n} \equiv 1(\bmod 6)$ | $\left(\frac{2 n-2}{3}\right)$ | $\left(\frac{2 n+1}{3}\right)$ | $\left(\frac{2 n+1}{3}\right)$ |
| $\mathrm{n} \equiv 2(\bmod 6)$ | $\left(\frac{2 n+2}{3}\right)$ | $\left(\frac{2 n-1}{3}\right)$ | $\left(\frac{2 n-1}{3}\right)$ |
| $\mathrm{n} \equiv 4(\bmod 6)$ | $\left(\frac{2 n+1}{3}\right)$ | $\left(\frac{2 n-2}{3}\right)$ | $\left(\frac{2 n+1}{3}\right)$ |
| $\mathrm{n} \equiv 5(\bmod 6)$ | $\left(\frac{2 n+2}{3}\right)$ | $\left(\frac{2 n-1}{3}\right)$ | $\left(\frac{2 n-1}{3}\right)$ |


| Nature of n | $\mathrm{e}_{\mathrm{f}}(0)$ | $\mathrm{e}_{\mathrm{f}}(1)$ | $\mathrm{e}_{\mathrm{f}}(2)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{n} \equiv 0(\bmod 6)$ | $\frac{2 n}{3}$ | $\frac{2 n}{3}+1$ | $\frac{2 n}{3}$ |
| $\mathrm{n} \equiv 1,4(\bmod 6)$ | $\left(\frac{2 n+1}{3}\right)$ | $\left(\frac{2 n+1}{3}\right)$ | $\left(\frac{2 n+1}{3}\right)$ |
| $\mathrm{n} \equiv 2(\bmod 6)$ | $\left(\frac{2 n-1}{3}\right)$ | $\left(\frac{2 n+2}{3}\right)$ | $\left(\frac{2 n+2}{3}\right)$ |
| $\mathrm{n} \equiv 3(\bmod 6)$ | $\frac{2 n}{3}$ | $\frac{2 n}{3}$ | $\frac{2 n}{3}+1$ |
| $\mathrm{n} \equiv 5(\bmod 6)$ | $\left(\frac{2 n+2}{3}\right)$ | $\left(\frac{2 n-1}{3}\right)$ | $\left(\frac{2 n+2}{3}\right)$ |

Table 3
Theorem: 3.6 Two copies of cycle $\mathbf{C}_{\mathbf{n}}$ having a common vertex is quotient- $\mathbf{3}$ cordial.
Proof: Let V $(\mathrm{G})=\left\{\left[\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq 2 \mathrm{n}-1\right]\right\}$ and
E $(G)=\left\{\left[\left(u_{1} u_{n}\right),\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right] \cup\left[\left(u_{1} u_{n+1}\right),\left(u_{1} u_{2 n-1}\right),\left(u_{i} u_{i+1}\right): n+1 \leq i \leq 2 n-2\right]\right\}$
Let $|V(\mathrm{G})|=2 n-1$ and $|E(\mathrm{G})|=2 \mathrm{n}$
Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{Z}_{4}-\{0\}$
Case (i): When $\mathrm{n} \equiv 0(\bmod 6)$
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{n}-1}\right)=3$.
For $1 \leq \mathrm{i} \leq 2 \mathrm{n}-2$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1, \quad \mathrm{i} \equiv 1,2(\bmod 6)$
$f\left(u_{i}\right)=3, \quad i \equiv 0,3(\bmod 6)$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2, \quad \mathrm{i} \equiv 4,5(\bmod 6)$
Case (ii): when $n \equiv 1(\bmod 6)$
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{n}-3}\right)=2$
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{n}-2}\right)=1$
$f\left(\mathrm{u}_{2 \mathrm{n}-1}\right)=3$
For $1 \leq i \leq 2 n-4$
$f\left(u_{i}\right)=1, \quad i \equiv 0,1(\bmod 6)$
$f\left(u_{i}\right)=3, \quad i \equiv 2,5(\bmod 6)$
$f\left(u_{i}\right)=2, \quad i \equiv 3,4(\bmod 6)$
Case (iii): when $n \equiv 2(\bmod 6)$
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{n}-2}\right)=2$.
Labeling of the vertices $\mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq 2 \mathrm{n}-1(\mathrm{i} \neq 2 \mathrm{n}-2)$ are same as in case (i).

Case (iv): when $n \equiv 3(\bmod 6)$
$f\left(u_{2 n-1}\right)=2$.
Labeling of the vertices $\mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq 2 \mathrm{n}-2$ are same as in case (i).
Case (v): when $n \equiv 4(\bmod 6)$
Labeling of the vertices $\mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$ are same as in case (i) and $\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=3$.
Labeling of the vertices $u_{i}, n+1 \leq i \leq 2 n-1$ is given below.
For $1 \leq i \leq 2 n-1$
$f\left(u_{i}\right)=2, \quad i \equiv 1,2(\bmod 6)$
$f\left(u_{i}\right)=3, \quad i \equiv 0,3(\bmod 6)$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1, \quad \mathrm{i} \equiv 4,5(\bmod 6)$
Case (vi): when $\mathrm{n} \equiv 5(\bmod 6)$
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{n}-3}\right)=3, \mathrm{f}\left(\mathrm{u}_{2 \mathrm{n}-2}\right)=1, \mathrm{f}\left(\mathrm{u}_{2 \mathrm{n}-1}\right)=2$.
Labeling of the vertices $u_{i}, 1 \leq i \leq 2 n-4$ are same as in case (i).

| Nature of n | $\mathrm{v}_{\mathrm{f}}(1)$ | $\mathrm{v}_{\mathrm{f}}(2)$ | $\mathrm{v}_{\mathrm{f}}(3)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{n} \equiv 0(\bmod 6)$ | $\frac{2 n}{3}$ | $\frac{2 n}{3}-1$ | $\frac{2 n}{3}$ |
| $\mathrm{n} \equiv 1(\bmod 6)$ | $\left(\frac{2 n-2}{3}\right)$ | $\left(\frac{2 n+1}{3}\right)$ | $\left(\frac{2 n-2}{3}\right)$ |
| $\mathrm{n} \equiv 2,5(\bmod 6)$ | $\left(\frac{2 n-1}{3}\right)$ | $\left(\frac{2 n-1}{3}\right)$ | $\left(\frac{2 n-1}{3}\right)$ |
| $\mathrm{n} \equiv 3(\bmod 6)$ | $\frac{2 n}{3}$ | $\frac{2 n}{3}$ | $\frac{2 n}{3}-1$ |
| $\mathrm{n} \equiv 4(\bmod 6)$ | $\left(\frac{2 n-2}{3}\right)$ | $\left(\frac{2 n-2}{3}\right)$ | $\left(\frac{2 n+1}{3}\right)$ |


| Nature of n | $\mathrm{e}_{\mathrm{f}}(0)$ | $\mathrm{e}_{\mathrm{f}}(1)$ | $\mathrm{e}_{\mathrm{f}}(2)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{n} \equiv 0,3(\bmod 6)$ | $\frac{2 n}{3}$ | $\frac{2 n}{3}$ | $\frac{2 n}{3}$ |
| $\mathrm{n} \equiv 1(\bmod 6)$ | $\left(\frac{2 n+1}{3}\right)$ | $\left(\frac{2 n+1}{3}\right)$ | $\left(\frac{2 n-2}{3}\right)$ |
| $\mathrm{n} \equiv 2(\bmod 6)$ | $\left(\frac{2 n-1}{3}\right)$ | $\left(\frac{2 n-1}{3}\right)$ | $\left(\frac{2 n+2}{3}\right)$ |
| $\mathrm{n} \equiv 4(\bmod 6)$ | $\left(\frac{2 n+1}{3}\right)$ | $\left(\frac{2 n+1}{3}\right)$ | $\left(\frac{2 n-2}{3}\right)$ |
| $\mathrm{n} \equiv 5(\bmod 6)$ | $\left(\frac{2 n-1}{3}\right)$ | $\left(\frac{2 n-1}{3}\right)$ | $\left(\frac{2 n+2}{3}\right)$ |

Table 4

## 4. Conclusion

In this paper, a quotient-3 cordial for some standard graphs has been found. The quotient-3 cordial labeling of some more graphs and graph families shall be explored in future.

## References

[1] Joseph A. Gallian. A Dynamic survey of Graph Labeling, Nineteenth edition, December 23, 2016
[2] Cahit I. Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Arts combin., 23 (1987), 201-207.
[3] S K Vaidya and N H Shah "Some New Families of Prime Cordial Graphs", Journal of Mathematics Research, Vol. 3, No. 4; November 2011.
[4] S K Vaidya and Lekha Bijukumar "Some New Families of E-Cordial Graphs", journal of Mathematics Research, Vol. 3, No. 4; November 2011.
[5] Sumathi P, Mahalakshmi A and Rathi A Quotient-3 Cordial Labeling for Star Related Graphs, Global Journal of Pure and Applied Mathematics, ISSN 0973-1768 Volume 13, Number 7 (2017), pp.3909-3918.
[6] Sumathi P, Mahalakshmi A and Rathi A Quotient-3 Cordial Labeling for path related graphs part-II Communicated on February 2017 and accepted June 2017 ARPN Journal of Engineering and Applied Sciences.
[7] Sumathi P, Mahalakshmi A and Rathi A Quotient-3 Cordial Labeling for path related graphs part-I Communicated on June 2017 to International Journal of Pure and Applied Mathematics.
[8] F. Harary, Graph Theory, Narosa Publishing House Reading, New Delhi ,1988.

